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Abstract

Evacuation route planning identifies paths in a given trartagion network to minimize the time
needed to move vulnerable populations to safe destinatitwacuation route planning is critical for nu-
merous important applications like disaster emergencyagament and homeland defense preparation.
It is computationally challenging because the number oteeas often far exceeds the capadigy,the
number of people that can move along the road segments irt &raei Linear Programming(LP) based
methods using time expanded networks can take hours to dayengputation for metropolitan sized
problems. In this paper, we propose a new approach, name@pacity constrained routing planner
which models capacity as a time series and generalizeseshqath algorithms to incorporate capacity
constraints. We characterize the design space for redtisngomputational cost. Analytical cost model
and experiment results show that the proposed algorithrasterf than the LP based algorithms and
requires less memory. Experimental evaluation using uarigetwork configurations also shows that the
proposed algorithm produces solutions that are compataliieose produced by LP based algorithms
while significantly reducing the computational cost.

Index Terms

evacuation planning, routing and scheduling, transgortatetwork

. INTRODUCTION

Many disasters, natural or man-made, can lead to situatidrese people need to be moved
from impacted areas to safe destinations. In such scenadrigscritical to identify routes such
that evacuation can be completed in the shortest possibke fvacuation route planning aims
at finding routes in the given transportation network thatildaninimize the evacuation time.
This is a critical step in disaster emergency managementhanteland defense preparation.
The recent catastrophes caused by hurricanes on the Gudf underscore the importance of
evacuation planning. Route planning in these circumstaiscehallenging because of the capacity
constraintsi.e. the limit on the number of people that can move along the roaginents
in unit time. Effective evacuation route planning that hanthe capacity constraints of the
transportation network has the potential to reduce comgesturing large scale evacuations.
A comprehensive approach which addresses capacity constend their time-dependence is
critical for the effectiveness of any evacuation plan.

Previous approaches [12], [19], [20], [23], [27], [28] toaewation route planning use linear
programming (LP) based methods to generate evacuatiors.plmese methods incorporate
capacity constraints by using time expanded networks aquine a user-provided upper bound
on the total evacuation time. Although these evacuationmiey algorithms generate optimal

plans, they are expensive with respect to memory and takagatime (order of hours to days)
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to solve problems of the sizes usually encountered in urbaouation scenarios. An overview
of LP based methods is given in Appendix Ill.

There is an immediate need for a scalable algorithm thatktuigenerates high quality
evacuation plans for metropolitan sized networks. Thisepggesents a new approach, namely
a Capacity Constrained Routing (CCRP) approach, to evacueiute planning. The proposed
approach makes use of well known shortest path algorithrdseatends them by incorporating
capacity constraints. It models capacity as a time seri@s¢ount for the time dependent nature
of the networks. It uses only the original evacuation nekwimstead of the time-expanded
network used by the LP based approach and thus requires Es®m

In this paper, we characterize the design space availakileeicontext of the Capacity Con-
strained Route Planner (CCRP) algorithm and evaluate tHferpgnce of the CCRP algorithm
for each dimension in the design space. The paper preseaatigieal cost models for the various
design options. Performance evaluation of CCRP was doneitgucting experiments on various
network configurations. Analytical evaluation and expemal results show that the proposed
CCRP algorithm produces high quality solutions, and sigaiftly reduces the computational

cost compared to the LP-based approach, which producesmapbut expensive solutions.

A. Application Domain

Evacuation route planning has been identified as a critieg & emergency management. A
recent Executive Summary [15] issued by the US Homelandr&gc@ouncil listed 15 kinds of
scenarios, ranging from natural disasters to terrorisickft, for which government agencies are
urged to develop emergency plans and most of these scemanidd require evacuation plans to
evacuate large populations to safe areas. Currently, ésoatgency management authorities often
identify evacuation routes by hand using a committee of #gp&hey do not have computerized
tools to consider capacity constraints of the transpomametwork and thus seldom avoid
congestion during evacuation. For example, when Hurri¢amdrew was approaching Florida in
1992 (see Figure 14), the lack of effective planning caussdeéndous traffic congestion, general
confusion and chaos (see Figure 15) [1]. This experienceesfased in the words of Mayor Tim
Lott of Morgan City, Louisiana when Hurricane Andrew lateralded for that state: "We packed
up Morgan City residents to evacuate in the a.m. on the dayAhdrew hit coastal Louisiana,

but in early afternoon the majority came back home. The traffis so bad that they couldn'’t get
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through Lafayette.” [1]. These events illustrate the camripy of evacuation route planning and
the fact that the problem extends beyond computing the estorbutes from evacuation points
to safe destinations. A comprehensive approach which dieslicapacity constraints and their
time-dependence is critical for the effectiveness of tHatsm. In very recent times, Hurricane
Katrina and Hurricane Rita (see Figure 16) caused similablpms [21]. Figure 17 shows the
traffic congestion caused by Hurricane Rita during the Homustvacuation on highway 1-45.

Other types of disasters, such as accidents or terroratkatt(e.g. bio-chemical attack) may
also result in the need for massive and rapid evacuationsaglp from metropolitan areas [10],
[11], [15], [17]. In other cases, a disaster may require th&ceation of large buildings (e.g.
Pentagon, the Sears Tower).

Thus, efficient tools are needed to produce evacuation pieatsdentify routes and schedules
to quickly evacuate affected populations to safety in trenewf natural disasters, terrorist attacks

or other types of large-scale emergencies.

B. Problem Formulation

We formulate the evacuation route planning problem asvialo
Given: A transportation network with non-negative integer cagyaconstraints on nodes and
edges, non-negative integer travel times on edges, thieniotaber of evacuees and their initial
locations, and locations of evacuation destinations.
Output: An evacuation plan consisting of a set of origin-destimatioutes and a scheduling of
evacuees on each route. The scheduling of evacuees on edelshmuld observe the capacity
constraints of the nodes and edges on this route.
Objective: (1) Minimize the evacuation egress time, which is the timegpséd from the start
of the evacuation until the last evacuee reaches the evagudé¢stination. (2) Minimize the
computational cost of producing the evacuation plan.
Constraint: (1) Edge travel time preserves the FIFO (First-In First)Qubperty. (2) Edge travel

time reflects delays at intersections. (3) Limited amountahputer memory.

Example 1- An Evacuation Network: Figure 1 shows an example evacuation network.
Each node is shown by an ellipse and has two attributes: mewimode capacity and initial

node occupancy. For example, at node N1, the maximum cgpac80, which indicates that
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this node can hold at most 50 evacuees at any time instantinitied occupancy is shown to
be 10, which means there are 10 evacuees at this node whewaitigagon starts. In Figure 1,
each edge, shown as an arrow, represents a link between tas.nBach edge also has two
attributes: maximum edge capacity and travel time. For @e@at edge N4-N6, the maximum
edge capacity is 5, which means at each time point, at mosa&uees can start to travel from
node N4 to N6 through this link. The travel time of this edgedjswhich means it takes 4
time units to travel from node N4 to N6. This approach of modghn evacuation scenario to
a capacitated node-edge graph is similar to those preseantddmacher [20], Kisko [28] and
Chalmet [12].

LEGEND

(Max Capacity, Travel Time)
- -

Edge

Nodel D

Destination

Desination#1

Destination#2

Fig. 1. Node-Edge Graph Model of Example Evacuation Network

As shown in Figure 1, suppose we initially have 10 evacueemdé N1, 5 at node N2, and
15 at node N8. The task is to generate an evacuation plan\thati&es the 30 evacuees to the
two destinations (node N13 and N14) using the least amoutiinef.

Example 2- An Evacuation Plan: Table | shows an example evacuation plan for the
evacuation network in Figure 1. In this table, each row shows group of evacuees moving
together during the evacuation with a group 1D, source nadeber of evacuees in this group,
the evacuation route with time schedule, and the destimatioe. The route is shown by a series
of node numbers and the time schedule is shown by a start s@ciated with each node on

the route. Take source node N8 for example; initially thene 5 evacuees at N8. They are
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divided into 3 groups: Group A with 6 people, Group B with 6 pkeoand Group C with 3

people. Group A moves from node N8 at time O to node N10, themesiérom node N10 at

time 3 to node N13, and reaches destination N13 at time 4. gSBofollows the same route as
group A, but has a different schedule due to capacity canssraf this route. This group moves
from N8 at time 1 to N10, then moves from N10 at time 4 to N13, seathes destination N13
at time 5. Group C takes a different route. It moves from N8iraetO to N11, then moves

from N11 at time 3 to N14, and reaches destination N14 at timEh& procedure is similar for

other groups of evacuees from source node N1 and N2. The what®iation egress time is 16
time units since the last groups of people (Groups H and Rhrekestinations at time 16. This
evacuation plan is an optimal plan for the evacuation seerswown in Figure 1.

Alternate problem formulations of the evacuation problemavailable by changing the objective

TABLE |
EXAMPLE EVACUATION PLAN

Group of Evacuees
ID | Source | No. of Evacuees Route with Schedule Dest. Time
A | N8 6 N8(T0)-N10(T3)-N13 4
B | N8 6 N8(T1)-N10(T4)-N13 5
C| N8 3 N8(T0)-N11(T3)-N14 5
D | NI 3 NZL(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13 14
E | NI 3 NZ(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13 15
F| N1 1 N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15
G| N2 2 N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15
H | N2 3 N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13 16
| N1 3 NZ1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14 16

of the problem. The main objective of our problem formulatis to minimize the evacuation
egress time. Two alternate objectives are: (1) Maximize rinember of evacuees that reach
the destination for each time unit; (2) Minimize the averayacuation time for all evacuees.
Jarvis and Ratliff presented and proved thiple optimization theoreni25], which illustrates

the properties of the solutions that optimize the aboveativgs of the evacuation problem.

C. Related Work and Our Contribution

The previous approach for evacuation route planning us@searl programming (LP) based
method. It models the evacuation problem as a network flovblpno [6], [18] and finds the

optimal solution using LP based method solvers. Hamachermgndra [20] gave an extensive
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literature review of the models and algorithms used in tHd3eébased methods. Based on the
triple-optimization results by Jarvis and Ratliff [25],eth.P based method for evacuation route
planning works as follows. First, it models the evacuati@work into a graph, as shown by
network GG in Figure 19, and it requires the user to provide an estimapgzer bound!” of the
evacuation egress time. Second, it converts evacuatiavorieti to a time-expanded network
by duplicating the original evacuation netwofk for each discrete time unit=0, 1,..., T.
Then, it defines the evacuation problem as a minimum costarktflow problem [6], [18]
on the time-expanded netwoik,. Finally, it feeds the expanded netwofk; to minimum
cost network flow solvers, such as NETFLO [26], to find the myli solution. For example,
EVACNET [12], [19], [27], [28] is a computer program basedtbis approach which computes
egress time for building evacuations. It uses NETFLO codeltain the optimal solution.
Hoppe and Tardos [23], [24] gave a polynomial time boundgdrithm by using the ellipsoid
method of linear programming to find the optimal solution flee minimum cost flow problem.

Theoretically, the ellipsoid method has a polynomial bathdunning time.

Limitations of Related Work: The LP based approaches can produce optimal solutions for
evacuation route planning. It is useful for evacuation aces with small size networks(several
hundreds of nodes and edges), such as building evacuatimneuer, this approach has the
following limitations. First, it significantly increasebd problem size because it requires time-
expanded networki; to produce a solution. As can been seen in Figures 19 and 2 if
original evacuation network: hasn nodes and the time upper bound7is the time-expanded
network G, will have at least(T + 1)n nodes. This approach may not be able to scale up to
large size (tens of thousands of nodes and edges) transporteetworks in urban evacuation
scenarios due to high computational run-time caused byrémeendously increased size of the
time-expanded network. Second, the LP based approachr@ésdhie user to provide an upper
boundT of the evacuation time in order to generate the time-expamadwork. It is difficult,
however, to precisely estimate the evacuation time for &amiscenario where the number of
evacuees is large and the transportation network is complexunder-estimated time bourid

will result in failure of finding a solution. In this case, thiser will have to increase the value of

*Details of time-expanded network are available in Appertix.
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T and re-run the algorithm until a solution can be reached.n@rother hand, an over-estimated
T will result in an over-expanded netwotk; and hence lead to unnecessary storage and run-

time and would adversely affect the scalability to largenmeks.

Our Contributions: To begin to address the limitations of the previous methbdsHuang and
Shekhar [31] proposed a heuristic capacity constrainetingualgorithm CCREO3 (formerly
called MRCCP in [31]) for evacuation route planning. It hasoanputational complexity)(p -
n?logn) (Wheren the is number of nodes andis the number of evacuees). Lu, George and
Shekhar [30] presented an improved algorithm CGFP which reduced the run-time ©(p -
nlogn) by optimizing the shortest path search in CC&® In this paper, we propose an improved
heuristic algorithm (CCRP6), based on CCRB5 [30], by exploring available design decisions
for CCRP.05. We characterize the design space available in the dooitélte CCRP algorithms
and evaluate the performance of the CCRP algorithms for efbttte design decisions. Since the
shortest path computation is the bottleneck step in CCRRj@arange of shortest path algorithms
and related data structures [13], [14], [16], [34], [36] @&xplored. Experiment results show
that Dijkstra’s algorithm with double-bucket data struetgives the best performance for CCRP.
We prove that CCR®6, which uses Dijkstra’s algorithm with double-buckets zen improved
run-time of O(p - (m + 2Cn)), which is faster than the LP based method in real evacuation
scenarios. We also show that CCRP requires less memory than the LP based algorithm.
Experimental evaluation of CCR®6 was conducted using various network configurations to
test the performance and the solution quality under differeetwork parameters. Results show
that CCRP06 produces high quality solutions and is much more comjoumaily efficient than
the LP based algorithm. It is also shown that CCB8%s advantage over the LP based algorithm
increases with increase in the number of destination nadései network.

We also developed an optimal algorithm using A* search [B33]. This algorithm addresses
the limitations of the LP based approach by using only thgial evacuation network to find
the optimal solution and it does not require a user-provideder bound on evacuation time.
We provide the proof of monotonicity and admissibility ofshA* search algorithm. However,
our experiments showed that this method is not scalablerg Isize networks. For interested

readers, we have included the details of this approach ireAg VI.
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D. Scope and Outline of the Paper

The main focus of the paper is on the analysis of a heurisgorghm which effectively
extends a shortest path algorithm to account for the capeoitstraints of a road network and
thus provides a simpler and computationally efficient sotuto evacuation route planning. In
this framework, the evacuation network will be modeled asaply and the capacities of the
edges and nodes will be modeled using time series. In oudgmoformulation, we allow time
dependent node capacity and edge capacity, but we assutredtie capacity does not depend
on the actual flow amount in the edge. We also allow time depainedge travel time, but we
require that the network preserve the FIFO (First-In FDst) property. Though the model cannot
handle travel times represented as continuous functiortsnef, a dynamic model represented
by a discrete function can be easily incorporated in this ehod
Outline of the Paper: The rest of the paper is organized as follows. Section 2epmtesour
heuristic approach to the problem. This section explaims hauristic algorithm and lists the
various design choices available in the context of the B&aralgorithm. Sections 3 and 4
deal with the evaluations of the various design choicesti@e8 gives an analytical evaluation
of various candidates pertaining to every design decis@evant to the performance of the
evacuation route planning algorithm. In Section 4, we pres@ experimental study to assess
the relative merits of various options available in evergige decision. We give the conclusions

and discuss future work in Section 5.

I[I. PROPOSEDHEURISTICAPPROACH

As discussed in Section 1, the LP based methods to solve theuaion route planning
problem use time expanded networks that require a large minodumemory; these methods also
require a prior knowledge of the upper bound of evacuatiore tiwe formulated the evacuation
route planning problem as a search problem implemented &% amarch as a new approach to
generate optimal solution without using time-expandedvagts (See Appendix VI). Though
this method finds optimal routes, its performance evalnat@mises some questions about its
scalability to metro-sized networks. We do not expect amgtic change in scalability unless we
can formulate another heuristic which would require lesmmatation and memory. The urgent
need for high quality, scalable solutions in evacuationteoplanning is thus the motivation

behind the exploration of heuristic methods in evacuatiims section discusses in detail the

April 30, 2006 DRAFT



10

CCRP algorithms, which have demonstrated very high sdajabi

A. Algorithm Framework

The algorithm discussed in this section uses a heuristib@deto solve the evacuation route
planning problem. The basic idea behind the heuristic isstalghe largest possible number of
evacuees on the shortest route to the nearest destinationgf the method relies on shortest
path algorithms to accomplish this, it contributes consitiy in terms of extension of these
algorithms to account for the capacity constraints encredtin real world evacuation networks.
Though the algorithm does not always yield an optimal sotufwith minimum evacuation time),
the scalability and time complexity of this method show ticaBnprovement over the optimal

methods.

B. Representation of the Temporal Network

In this representation, the edge capacity and node capaetynodeled as a time series instead
of fixed numbers. This time series stores the available ¢gpaceach time instant for a given
edge or node. The next section discusses a heuristic appvdach uses this representation to
extend the shortest path algorithms [14], [16] to accountépacity constraints of the network.
This representation is clearly illustrated in Tables V and (Mppendix Il)which show the

time series representation of node and edge capacitieeafetwork shown in Figure 19.

C. Heuristic Approach - CCRP Algorithms

In this section, we present a generic description of the Cigp&onstrained Route Planner
(CCRP). CCRP is a heuristic algorithm which is based on aenskbn of shortest path algo-
rithms [14], [16] to account for capacity constraints of tietwork.

The CCRP algorithm uses an iterative approach. In eachidarahe algorithm first searches for
route R with the earliest destination arrival time from any sourcel@ to any destination node,
taking previous reservations and possible waiting time iconsideration. Next, it computes
the actual number of evacuees that will travel through raRteThis number is affected by
the available capacity of rout® and the remaining number of evacuees. Then, it reserves the
node and edge capacity on route R for those evacuees. Thétlalg@ontinues to iterate until
all evacuees reach the destination. An outline of the dlgworiis shown in Algorithm 1. The

detailed pseudo-code and algorithm description are ginefyppendix V.
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Algorithm 1 Capacity Constrained Route Planner (CCRP)
Input:
1) G(N,E). a graph G with a set of nodes N and a set of edges E;
define type nn non-negative integer
Each node n € N has two properties:
Mazimum_Node_Capacity(n), Initial_Node_Occupancy(n) : nn
Each edge e€ E has two properties:
Mazimum_Edge_Capacity(e), Travel time(e) : nn
2) S: set of source nodes, SCN;
3) D: set of destination nodes, D CN;
Output: Evacuation plan : Routes with schedul es of evacuees on each route
Method:
(1)whil e any source node s€ S has evacuee do {

(2) cl osest pair shortest path();
(3) conputeflow();
/* k is the nunber of nodes on the shortest path */
(4) for t1=0to k—1 do {
(5) reserveflow);
}

Qut put evacuation plan with routes and schedul es of evacuees on each route;

The CCRP algorithm keeps iterating as long as there areegtituees left at any source node
(line 1). Each iteration starts by finding the rouewith the earliest destination arrival time
from any source node to any destination node based on thentwavailable capacities (line 2).
This is done by generalizing Dijkstra’s shortest path atgar [14], [16] to work with the time
series node and edge capacities and edge travel time. Rbigethe route that starts from a
source node and gets to a destination node in the least arobtinte, and available capacity
of the route allows at least one person to travel througherduito a destination node. Given
the evacuation network in Figure 1, the example executiacetiof CCRP is as follows:

Example 3- CCRP Execution Trace: At the very first iteration, routé will be N8-N10-N13.
Evacuees from source node N8 can take this route to reacimatést N13 at time 4 using the
time schedule N8(T0)-N10(T3)-N13. At algorithm line 3, thetual number of evacuees that
will travel through routeR is determined by taking the smallest number among the numiber
evacuees at the source node and the available capacitielofr@des and edges on route
based on the time schedule that evacuees will travel threagh node and edge. Thus, at the first
iteration, this flow amount of? will be 6, which is the available edge capacity of edge N8-Idi.0
time 0. The next step is to reserve capacities for the evacoe@ach node and edge of route

based on the time schedule(lines 4-7). At the first iteratiibe@ algorithm makes a reservation for
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the 6 evacuees by reducing the available capacity of eacé aond edge at corresponding time
points. This means that available capacities are reducé&dftayedge N8-N10 at time 0, for node
N10 at time 3, and for edge N10-N13 at time 3. The 6 evacuee® at destination N13 at time
4. Then, the algorithm goes back to line 1 for the next iterdtine 8). The iteration terminates
when the occupancy of all source nodes is reduced to zerahwheans all evacuees have
been sent to destination nodes. Line 9 outputs the evaougldm, as shown in Table I. A more

detailed illustration of the iterations of the algorithm thie network is shown in in Appendix V.

D. Design Decisions in the CCRP Algorithm

The CCRP algorithm uses shortest path computation as ones ddey steps to generate
the evacuation plan. This section evaluates the choicésateaavailable in the context of this
computation. For details on the design space in the confestazuation planning algorithms, the
reader can refer to Appendix Il. This section also lists tesigh options available specifically
in the context of the proposed CCRP algorithm.

1) Choice of Algorithm to Identify Closest Source-Destoratair: The performance of the
heuristic algorithm depends heavily on the efficiency in pating the shortest paths from source
nodes to destination nodes. The run time increases in gropdo the number of runs of the
algorithm. The CCRB6 algorithm makes a major improvement in the algorithm usefind
the quickest route between the closest source-destinpdionin CCRPO5, finding the quickest
route R is done by running generalized shortest path searches femn source node. Each
search is terminated when any destination node is reachedCRPO06, this step is improved
by adding a super source nodg to the network and connecting to all source nodes. This
allows us to complete the search for rodteby using only one single generalized shortest path
search, which takes the super soukgeas the start node. This search terminates when any
destination node is reached. Since the super soyree connected to each source nodes by an
edge with infinite capacity and zero travel time, it can belgasoved that the shortest route
found by this search is the rout@ that we need. This improvement significantly reduces the
computational cost of the algorithm by one degree of magdeitcompared with CCRB5.

2) Algorithms Used in the Shortest Path Computatidhe most computationally intense task

in the CCRP algorithms is the computation of the shortesh fraim a source to destinations.
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The performance of the CCRP algorithm depends significasiythe shortest path algorithm
used. Although a number of evaluations of the existing gsbrpath algorithms are available,
there is no clear answer as to which algorithm would perfdrenldest in our case. In this section
we explore a set of shortest path algorithms that belongagytbups of label setting and label
correcting algorithms [13] and try to evaluate them in thategt of evacuation route planning.
These two types of algorithms differ in the criteria usedha selection of nodes for scanning.
This leads to a difference in the ways they update the estiofahe shortest path distance(label)
associated with each node and in the ways in which they cgaever the optimal shortest path
distance.

Dijkstra’s algorithm is one of the most widely used labelisgtalgorithm. This paper evaluates
the performance of the evacuation route planning algoriimen Dijkstra’s algorithm is used
to compute the shortest path. Since this algorithm seléesnbde with the shortest distance
estimate as the next node to be scanned, the algorithm pexfaell when the destination node
is "close” to the source node. Label correcting algorithmben implemented with suitable
data structures can outperform Dijkstra’s implementatiamen the destination nodes are "far
away” from the source nodes. The performance of these #igasi depends on the number of
destination nodes in the problem formulation and the lewndtine shortest path from the source
to the destination relative to the longest, shortest patthénnetwork. Since we do not always
know these parameters in advance, the performance of labecting algorithms, in addition
to label setting algorithms, needed to be evaluated in timegb of the CCRP algorithm.

3) Data Structures Used in the Shortest Path Computatidere we describe two different
versions of Dijkstra’s algorithm and two versions of a labelrecting algorithm. These algo-
rithms are reported [40] to give the best performance amdinghartest path algorithms on
road networks. They differ in the data structures used tontag the set of labeled nodes.
The double bucket implementation of Dijkstra’s algorithena modified version of Dial's im-
plementation. The details of this implementation are giveAppendix II-E.The complexity of
the algorithm isO(m + n(A + C/A)). This implementation of Dijkstra’s algorithm is espeayall
suitable for networks with non-negative arc lengths, whihhe case for road network used
in evacuation route planning. Since the CCRP algorithmsthseshortest path algorithm to
find the shortest path from a single source to a single deéstimathere is a likelihood that

the double bucket implementation would outperform any lla®tting algorithm since it can
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terminate as soon as the destination node is reached. Tieeedife in the running times of
various implementations of the label setting algorithmsus to the difference in the computation
involved in selecting a labeled node with the minimum lalelcontrast to dense graphs, where
this computation is small compared to the work involved id@@cans, the selection process
would be a significant part in sparse graphs. Bucket impléatiems appear to be cheaper than
heap implementations since heap operations are expemgagsithe number of nodes in the heap
is small. Among the bucket implementations, double buckegilementation is preferred since
it uses less memory than Dial's implementation. Road nétsvare generally sparse:(x 4n)
and hence the bucket implementation of the algorithm wowlceticient. Dijkstra’s algorithm
using Fibonacci heaps qualifies as a candidate because lzésts worst-case complexity. The
asymptotic complexity of the algorithm @& (m + nlogn).

Despite the worse asymptotic performan€é(*m) of the Two-Q algorithm, it has the potential
of performing better if the destination node is sufficierly away from a given source node.
The Two-Q algorithm is a good choice as a candidate algorgihmoe at each iteration of the
CCRP algorithms we do not have the prior knowledge about hogtesst path distance from
the(super)source to a destination node relative to theelsinghortest path distance in a shortest
path tree rooted at the source node. But, it must be notedrtls@ime iterations, we would have
cases where the shortest path distance from the source te#ftimation is a small fraction of
the longest shortest path distance in the shortest pathTiheg prompts the choice of Dijkstra’s
algorithm in addition to the label correcting algorithmsa| since the CCRP algorithm computes
the shortest path from a single source to multiple destinatithe relative performance of the
shortest path algorithms can depend on the number of dastinaodes relative to the total
number of nodes. The label correcting methods may have am@da the label setting methods
in scenarios where the number of destinations is a signtfitaction of the total number of

nodes.

I1l. ANALYTICAL EVALUATION OF CCRP CESIGNDECISIONS

In this section, we give an analytical evaluation of the edi#iht options available for each
of the design decisions of the CCRP algorithm. Each sulmseewvaluates the options for one

CCRP design decision. The options are listed in Figure 21.
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A. Heuristic vs Optimal Algorithms

Here, we compare the computational cost of optimal algasttand heuristic algorithms by

providing analytical evaluation of both methods.

Optimal methods using Linear Programming:

The computational cost of the LP approach depends on theochetbed to solve the minimum
cost flow problem. Hoppe and Tardos [23] showed that this I[prolcan be solved using the
ellipsoid method, which is theoretically polynomial timeunded. However, the computational
complexity of the ellipsoid method is at lea@t N°®) [9](where N is the number of nodes in the
network). Since the LP approach requires a time-expandeebrie in which N equals(T'+1)n
(wheren is the number of nodes in the original evacuation network ‘And the user-provided
evacuation time upper bound), the optimal algorithm usifgblased runs in at leaék((7 - n)"%)

time.

Heuristic Method:

We now provide the algebraic cost model for the computationat of the heuristic algorithm
presented in Lu, George, and Shekhar [30]. The CCRP algonhan iterative approach. In
each iteration, the route for one group of people is chosehtlh@ capacities along the route
are reserved. The total number of iterations equals the euwiftgroups generated. In the worst
case, each individual evacuee forms one group. Therefoeeupper bound of the number of
groups isp, i.e. the number of iterations i3(p). In each iteration, the computation of the route
R with earliest destination arrival time is done by runningeageneralized Dijkstra’s shortest
path search. The worst case computational complexity d&sbBg’'s algorithm isO(n?) for dense
graphs [14]. Various implementations of Dijkstra’s alglonh have been developed and evaluated
extensively [6], [13], [40]. Many of these implementatioren reduce the computational cost by
taking advantage of the sparsity of the graph. Transportatad networks are very sparse graphs
with a typical edge/node ratio around 3. In this paper, welement the shortest path search
in the CCRP06 algorithm using Dijkstra’s algorithm with double bucldgta structures, which
runs inO(m+n(A+C/A)) time [13], whereA is the bucket size an@' is the maximum edge
weight. In our implementation) is set to the biggest power of two that is less tha@' [13].
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The time complexity is heno®(m+2Cn). The generalization of Dijkstra’s algorithm to account
for capacity constraints affects only how the shortestagdis¢ to each node is defined. It does
not affect the computational complexity of the algorithninefefore, the search for roufe in
CCRPO6 takesO(m + 2Cn) time. The reservation step is done by updating the node agel ed
capacities along rout®, which has a cost af(n). Each iteration of the CCRB6 algorithm is
done inO(m + 2Cn) time. It takesO(p) iterations to complete the algorithm. The cost model
of the algorithm isO(p - (m + 2Cn)). The LP based approach produces optimal solutions but
suffers from high computational cost. A heuristic methoduaes the computation cost though
it produces a sub-optimal solution.

Lemma 1: CCRPO6 is asymptotically faster than LP based algorithm when £—20n5.

Proof: The cost model for CCRP6 is in O(p - (m + 2Cn)). Transportation road networks are
very sparse graphs with a typical edge/node of less tham.3ni< 3n. This means CCRP6
runs inO(p - (3 + 2C)n) time on road networks. The optimal algorithm using LP runsatn
leastO((T - n)%) time. Therefore, CCRP6 is asymptotically faster than LP algorithm when
p < ?’f—gcn5. This condition is almost always true in a real evacuatioenacio, in whichn

(number of nodes in the network) ranges from hundreds taamdl and7T" (upper-bound on

evacuation time) can be hundreds of minutes.

B. Temporal Network Framework - Time Expanded Network ve& Beries Representation

Another design decision is to choose a framework to reptakertemporal network. The two
available choices are time expansion and time series rm®N. In this section, we compare
the two temporal network frameworks by providing an anabjtievaluation of the memory

requirements.

Time Expanded Network:

Let G be the original graph that represents the evacuation nktwor

The size of the time expanded netwadis = (Np, A7) would be as follows:

Number of nodesNy| = (T + 1)n, wheren is the number of nodes in the original network.
Number of edge$Ar| = T'(m + d), wherem is the number of edges i@, andd is the number
of destination nodes.

According to the analysis in [28], the minimum memory requoient (number of bytes) for the

April 30, 2006 DRAFT



17

time expanded network is at leg$ + 367")n + (20 +127")m. Since T is always a large number

(at least hundreds) in real evacuation scenarios, it cannygliSed as7'(36n + 12m).

Time Series Representation:

Let graph G be the evacuation networly the number of nodes id7, and m the number
of edges inG. Instead of the time expanded netwo@¢ used in time expansion, the time
series representation used by the COFPalgorithm needs to work only with the original
network G. CCRPO06 needs data structures to store a network witftbde andn edges. In our
implementation, the number of bytes used to store the nktigdsn + 12m.

In addition, the time series representation incorporadgacity constraints by building a time
series for each node and each edge to keep track of the deailathe capacity and edge capacity
at each time instant during the evacuation. In our impleatéont, the number of bytes used for
the time series idtn + 4tm, wheret is the evacuation egress time.

Therefore, the memory requirement (number of bytes) foQB&P 06 algorithm is(8+4t)n+
(124 4t)m. As T is always a large number (at least hundreds) in realuatam scenarios, we
can simplify it asdt(n + m).

Lemma 2: The time series representation used in CaRAequires less memory than the time
expanded network used in LP algorithmtik 37'.

Proof: The number of bytes required by the time expanded networktamel series repre-
sentation arel’(36n + 12m) and 4¢(n + m). Therefore, the time series representation used in
CCRPO6 requires less memory than the time expanded network umséukiLP algorithm if

t < 3T. Our experiments show that evacuation timproduced by the CCRB6 algorithm is
within ten percent of the optimal evacuation time (see t&etai Section 1V-A.3), which means

t is within five percent larger thai. Therefore, the condition is almost always true.

C. Choice of Algorithm to Identify Closest Source-DestoraPair

The most critical step in the heuristic algorithm presente8&ection II-C is the computation
of the shortest paths between all source-destination.péims step is key in determining the
route each group would be assigned to minimize the evacuétioe. Since there are various
ways to formulate the "closest pair problem”, there is a needvaluate the performance with

respect to the choices listed in Section 2.4.
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TABLE I
COMPARISON OFCOMPUTATIONAL COSTS(n: NUMBER OF NODES p: NUMBER OF EVACUEES T': USER-PROVIDED
UPPERBOUND ON EVACUATION TIME, C': MAXIMUM EDGE WEIGHT); SOURCE[30]

| Algorithm | Computational Cost |
CCRPRO06 O(p- (m + 2Cn))
CCRPO05 O(p - n%logn)
Linear Programming Approach at leastO((T - n)®)

Table Il provides a comparison of the LP based approach amdhehristic algorithm with
k shortest path computations and single shortest path catnput CCRPO5 is the version of
the heuristic algorithm which runs the shortest path atborimultiple times and CCRB6 runs
the shortest path algorithm just once in an iteration. As lbarseen, the LP-based approach
produces optimal solutions but suffers from high compatetl cost. Both versions of the
heuristic algorithm reduce the computation cost.
Lemma 3. CCRPOG6 is strictly faster than CCRB5.
Proof: CCRPO06 runs inO(p - (m + 2Cn)) time and CCREO5 runs inO(p - n2logn) time ( II.
Transportation networks are sparse and the number of edyés(@enerally a linear factor of
the number of nodes] (usuallym ~ 3n). Therefore, it is easy to see that CCR® is strictly
faster than CCR®5.

D. Shortest Path Algorithms/Data Structures

Valuable insight into the performance of the candidate ralgms is provided by Table I,
which lists the asymptotic complexities of the algorithmisemn used in conjunction with various
data structures. The implementations of Dijkstra’s aldponi using various data structures have
the best asymptotic complexities. In the double bucket @mantation of the algorithm, if the
bucket size Q) is set to the biggest power of two less theld, whereC is the maximum edge
weight, the time complexity of this implementation would ©ém + 2Cn). In a transportation
network, since the edge weight represents the travel tithes small (of the order of tens
of units). Since in a metropolitan sized network the factdnn would be larger thar2Cn,
it can be concluded that the double bucket implementatiothefDijkstra’s algorithm would

perform better compared to the other implementations. ileegpworse asymptotic performance
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TABLE 11l
ASYMPTOTIC COMPLEXITIES (n: NUMBER OF NODES m: NUMBER OF EDGES A: BUCKET SIZE, C: MAXIMUM EDGE
WEIGHT) ; SOURCE[13]

Algorithm Dijkstra- Dijkstra- Dijkstra- Two_Q
binary- Fibonacci Double-
heap heap bucket

| Asymptotic Complexity | O(mlogn) | O(m+ nlogn) | O(m +n(A + C/A)) | O(mn?) |

compared to Dijkstra’s algorithm, the Tw@ algorithm has the potential of performing better
if the closest destination node is sufficiently far away frtime source node [13]. Since the
shortest path distance is not known in advance in a trareggmrtnetwork, the Twd algorithm

also qualifies to be a candidate algorithm.

E. Solution Quality of CCRP

Since CCRP is a heuristic algorithm, it does not producentgdtsolutions for all evacuation
scenarios. Experiments show that the evacuation time peatioy CCRP is slightly (within 10%)
longer than the optimal evacuation time in all test casetailéd results given in Section IV-A.3).

However, it can be shown that, under certain conditions, EC&n produce optimal solutions.
We define the bottleneck capacity of the evacuation netwsth@number of evacuees which can
travel simultaneously using shortest paths without anyt waring their entire travel between
respective source-destination pairs. For example, aalritiough very loose lower bound on
bottleneck capacity is the minimum of the maximum edge agpacd maximum node capacity.
Lemma 4: CCRP produces an optimal solution if the number of evacueésss than or equal
to the bottleneck capacity of the network.

Proof: It is easy to see that when the total number of evacuees is me than the bottleneck

capacity of the network, there will be no wait time for any @vaes traveling along a route
because waiting only occurs when the number of evacueestoegsk a route is greater than
the maximum node or edge capacity on this route. In this dhsegvacuees from each source
can be sent through the quickest route to a destination utithay delay on the route. This

means that the problem is reduced to first finding the shop&st from each source node to
any destination node and then sending all evacuees from s@aaite node as one group to

a destination using the shortest path found. In this casehalroutes used are the shortest
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path from each source to a destination and there is no detmgahe routes. Therefore, the

evacuation plan found must be the optimal plan.

V. EXPERIMENTAL EVALUATION OF CCRP.0O6 DESIGN DECISIONS

Performance evaluation of CCRI® design decisions consisted of the following tasks: 1)
Compare the algorithm run-time and solution quality of theRP06 algorithm and the LP
based algorithm, 2) Compare two versions of the the CCRPriligts, namely CCRP with
multiple shortest search (CCRI») and CCRP with single shortest path search (COBPand
3) Compare the performance of different implementation€6RP.06 using different shortest

path search algorithms.

A. Comparison of CCRB6 and Linear Programming Approach

The purpose of this section is to compare the performandeedfi¢uristic CCRB®6 algorithm,
with the optimal LP based algorithm. The linear programnsoffware used in this experiment
was RelaxIV [8], which is widely considered as one of thedasminimum cost flow solvers.
The experiment was done by comparing the algorithm run-mihn€ CRP06 and RelaxIV by
using various network configurations. It should be notedl tthe CCRPO06 algorithm used in this
experiment was implemented with Dijkstra’s shortest p&gbrthm using the double-bucket data
structure. The reason for choosing Dijkstra’s algorithnthwdouble-bucket is that experiments
show that it results in best CCRF6 performance among available shortest path algorithnes. W
present a detailed analysis of this choice in Section IV-B.2

1) Experiment DesignFigure 2 illustrates the experiment design to compare thi@peance
of CCRP06 and RelaxIV. First, NETGEN [29] was used to generate eatdmo networks
with capacity constraints and evacuees. NETGEN is a softwlaat generates transportation
networks with capacity constraints and initial suppliesdzhon a set of input parameters. In our
experiments, the following four were selected as indepenhplarameters to test their impacts on
the performance of the algorithms: 1) network size repriesehy number of nodes; 2) number
of evacuees initially in the network; 3) number of source esgcand 4) number of destination
nodes. Number of edges is treated as a dependent parameteet\WWhe number of edges to be
equal to 3 times the number of nodes because the typical remttgefatio for real transportation
road networks is around 3. Next, the evacuation network rgéee by NETGEN was fed to

the CCRP06. Before feeding the network to RelaxlV, we needed to usetaark converter to
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Fig. 2. Experiment Design

transform the evacuation network into a time-expanded otvwhich is required by minimum
cost flow solvers (such as RelaxlV) to solve evacuation gmisl [12], [20]. This conversion
requires an input parameter T, which is an estimated uppendb on the optimal evacuation
egress time. If the evacuation cannot be completed by tiniRelaxIV will return no solution.

In this case, T needs to be increased to create a new timeasgpanetwork and to run RelaxIV
again until a solution can be reached. In the experimentsaweéded under-estimation of T
by setting T equal to the egress time produced by CORPSince CCRI6 is a heuristic
algorithm, its evacuation egress time can be used as an-bpped of the optimal solution.
After CCRP06 and RelaxIV produced solutions for each test case, tlegitdgn run-times were
collected and analyzed in the data analysis module. Thig speriment design was also used
to evaluate the solution quality of CCRI®; we present the results and analysis in Section
IV-A.3.

The experiments were conducted on a workstation with InégltiBm 4 2.8GHz CPU, 2GB
RAM and Linux operating system. Each experimental resydored in the following sections
is the average over 5 experiment runs with networks gerteregimg the same input parameters.

2) Experiment Results for Algorithm Run-timg/e wanted to answer four questions: (1)
Are the algorithms scalable to the size of the network, paldrly will they handle large size

transportation networks as in urban evacuation scenafg)dqow does the number of evacuees
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affect the performance of the algorithms? (3) How does theber of source nodes affect
the performance of the algorithms? (4) How does the numbetestination nodes affect the
performance of the algorithms?
a) Experiment 1: Are the algorithms scalable to the size efrthtwork?

In this experiment, we evaluated how the network size affdat performance of the algorithms.
We fixed the other three independent parameters and vaeedetiwork size to observe the run-
time of the algorithms. The experiment was done using ndtsvatith 5000 evacuees, 20 source
nodes, and 10 destination nodes. We varied the number otrindbke work from 50 to 50000.

Figure 3 shows the run-times of the two algorithms with ampagganying data table. Both the
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Fig. 3. Run-timelg-scale)With Respect to Network Size. Fig. 4. Run-time With Respect to Number of Evacuees
(Note: Both x-axis and y-axis are in logarithmic scale.)

x-axis(number of nodes) and y-axis(run-time) of Figure & an a logarithmic scale rather than
linear. It can be seen that the CCRB algorithm runs in time that is proportional to a small
polynomial in the size of the network while the run-time ofl&&V grows much faster. This
shows that CCRB6 is much more computationally efficient than LP RelaxIVisTéxperiment
also shows that the run-time of CCRIB is scalable to the size of the network.

b) Experiment 2: How does the number of evacuees affect tferpance of the algorithms?
The purpose of this experiment was to evaluate how the nuwibevacuees affects the perfor-
mance of the algorithms. We fixed the other independent pateasmand varied the number of
evacuees to observe the algorithm run-time of CG®Rand Relaxl|V.

The experiment was done using networks with 5000 nodes, 2@00ce nodes, and 10
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destination nodes. We varied the number of evacuees from® E@®0000. Figure 4 shows
the run-times of the two algorithms. As can be seen, in eatictese, the run-time of CCRFE
remains less than half that of RelaxIV. In addition, the CAFPrun-time is scalable to the
number of evacuees while the run-time of RelaxlV grows muwasidr. This experiment shows:
(1) CCRPO6gives much less run-time than that of RelaxIV. (2) The tiove of CCRPO6 is
scalable to the number of evacuees.

c) Experiment 3: How does the number of source nodes affecpehformance of the algo-

rithms?
In this experiment, we evaluated how the number of sourcesaifects the performance of the
algorithms. We fixed the other three independent paramatsisvaried the number of source
nodes to observe the algorithm run-time. In this experinstp, by varying the number of
source nodes, we actually create different evacuee disitis in the network. A higher number
of source nodes means that the evacuees are more scattehednatwork.

The experiment was done using networks with 5000 nodes, 8@€uees, and 10 destination
nodes. We varied the number of source nodes from 1000 to #480€hown in Figure 5, the run-
times of both algorithms are scalable to the number of sonotkes. However, in all test cases,
the run-time of CCRR6 remains less than half of the run-time of RelaxIV. This exkpent

also shows that the run-time of CCRIB is scalable to the number of source nodes.
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Fig. 5. Run-time With Respect to Number of Source Nodes Fig. 6. Run-time With Respect to Number of Destination
Nodes

d) Experiment 4: How does the number of destination nodextafhe performance of the
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algorithms?

In this experiment, we evaluated how the number of destinatiodes affects the performance
of the algorithms. We fixed the other three independent petens and varied the number of
destination nodes to observe the algorithm run-time. Thpement was done using networks
with 5000 nodes, 5000 evacuees, and 2000 source nodes. Wd tlae number of destination

nodes from 10 to 50. Figure 6 shows the run-times of the twordhgns.

As can be seen, the run-time of the CCB® algorithms actually decreases as the number
of destination nodes grows, while the run-time of Relaxl\¢reases. This is due to the fact
that CCRPO6 uses shortest path searches in each iteration to find thkegtiroute from any
source node to any destination node and we implemented trgeshpath search with Dijkstra’s
algorithm [16]. It is known that Dijkstra’s algorithm findee shortest path from the source to any
node as soon as the node is permanently labeled [14]. In QEEREhis means that the quickest
route is found as soon as any destination node is reached ifstr®s algorithm can terminate.
This property enables the CCRI® algorithm to take advantage of more destination nodes
because more destinations result in less time for Dijkstéjorithm to reach a destination node
and hence it reduces the CCRB run-time when the number of destination nodes incre&ses.
contrast, the RelaxIV algorithm, which does not uses Digstalgorithm, cannot take advantage
of more destination nodes. As Figure 6 shows, more destimaitbdes make the problem harder
for RelaxIV to solve because its run-time actually increasehe number of destination nodes
grows.

This experiment shows that the run-time of CCB® decreases as the number of destination
nodes grows, while the run-time of RelaxlV increases. TheREO6 algorithm has a clear
advantage over RelaxIV on algorithm run-time when there @sdnto add more destination
nodes to an evacuation scenario.

3) Experiment Results for Quality of Solutiom this experiment, we used the same experi-
ment design as shown in Figure 2 After CCR® and RelaxIV produced solutions for each test
case, the solution quality of the two algorithm were cobeicand analyzed in the data analysis
module.

We wanted to compare the solution quality of the CQB& which is a heuristic algorithm,
with that of the RelaxIV, which produces optimal solutio®e conduct the comparison by

examining how the following four parameters affect the soluquality of CCRP06: (1) network
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size represented by number of nodes in the network; (2) numbevacuees; (3) number of
source nodes; and (4) number of destination nodes.

a) Experiment 1: How does the network size affect the thetisnlguality of CCRP06?

In this experiment, we evaluated how the network size afded performance of the algorithms.
We fixed the other three independent parameters and vareedhdatwork size to observe the
quality of solutions.

The experiment was done using networks 5000 evacuees, 2fesoodes, and 10 destination
nodes. We varied the number of nodes in the work from 50 to @0Bigure 7 shows the solution
guality represented by evacuation egress time.

In each of the test cases, CCRB produced high quality solutions (within 10 percent lange
than optimal evacuation time) and the solution quality of RRCbecomes very close to the
optimal solution produced by RelaxIV as the network sizegases. This means CCRIB can
produce close-to-optimals solutions for large size nekaior

This experiment shows: (1) The solution quality of CCB® increases as the network size
grows, (2) CCRREO6 produces close-to-optimal solution for large size nétwde.g. network
with more than 5000 nodes).

These findings indicate that CCRI® has an advantage over the RelaxIV algorithm when
producing plans for urban evacuation scenarios where thd network is complex. In these
cases, CCRI®6 can provide high quality solutions with much less runringe than the optimal
solution algorithm as we showed in the previous experimevitsre importantly, the findings
suggest that it is often not necessary to obtain the optiraad ;m a real evacuation scenario.
Instead, it is critical to be able to produce a number of higlality plans efficiently so that
officials can revise the plan based on the changing situatimh make decisions in a timely
manner.

b) Experiment 2: How does the number of evacuees affect@olqtiality of CCRP0O6
In this experiment, we fixed the other independent parameted varied the number of evacuees
to observe the quality of the solution and the run-time of @0 and RelaxIV.

The experiment was done using networks with 5000 nodes, 200@ce nodes, and 10
destination nodes. We varied the number of evacuees frond 50®0000. Figure 8 shows
the solution quality represented by evacuation egress e exception is that the data point

with 50 evacuees has only 25 source nodes, we included thip s® order to test whether

April 30, 2006 DRAFT



26

CCRP can an produce optimal solution when the number of eescis no greater than the

bottleneck capacity (50 in this test case) of the networkstated in Lemma 4.
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The experiment results show that: 1) In each test case, Q@ERSroduced very high quality
solutions compared with the optimal solutions produced bBjaRV. 2) At the data point with
50 evacuees, CCRP produced the same evacuation time (30€utits)as RelaxIV produced.
In this test case, the number of evacuees is less than thiermmk capacity of the network.
Therefore, CCRP produces the optimal solution as we statéctmma 4. Its solution quality
does drop slightly though, as the the number of evacueessgrow

c)Experiment 3: How does the number of source nodes affecdiution quality of CCRR67?

In this experiment, we evaluated how the number of sourcesadfects the solution quality
of the algorithms. We fixed the other three independent patens and varied the number of
source nodes to observe the quality of the solution. In thgeement setup, by varying the
number of source nodes, we actually create different ewadisributions in the network. A
higher number of source nodes means that the evacuees agesoattered in the network.

The experiment was done using networks with 5000 nodes, 8@€uees, and 10 destination
nodes. We varied the number of source nodes from 1000 to 40§0re 9 shows the solution
quality represented by evacuation egress time.

In all test cases, CCRP6 produced high quality solutions (within 5 percent longen the

optimal evacuation time) and the number of source nodesittlasefffect on the solution quality
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of CCRPO6. It is also interesting to note that the evacuation egt@ss is non-monotonic
with respect to the number of source nodes. This means than wWie number of evacuees is
fixed, adding more source nodes does not necessarily ikcogadecrease the evacuation egress
time. In this case, the location of the newly added sourceesdthve much more impact on the
evacuation time. For example, adding source nodes clogbetdestinations will likely decrease
the evacuation time, while adding source nodes further dnay the destinations will likely
increase the evacuation time.

This experiment shows: (1) CCRF5 produces high quality solutions in all test cases. (2)The
solution quality of CCREO6 is not affected by the number of source nodes.

d) Experiment 4: How does the number of destination nodestatfie the solution quality of
CCRPO06?

In this experiment, we evaluated how the number of destinatbdes affects the solution quality
of the algorithms. We fixed the other three independent patens and varied the number of
destination nodes to observe the quality of the solution.

The experiment was done using networks with 5000 nodes, B08Cuees, and 2000 source
nodes. We varied the number of destination nodes from 10 té-igdire 10 shows the solution
guality represented by evacuation egress time.

In all test cases, CCRB6 produced high quality solutions (within 5 percent longjean
optimal evacuation time) and the number of destination adues little effect on the solution
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guality of CCRPO06. Similar to the previous experiment on the number of sourades, it
is also noted that the evacuation egress time is non-moitotath respect to the number of
destination nodes. This means that adding more destinatidas to an evacuation scenario does
not necessarily reduce the evacuation egress time. Indteadbcation of the added destination
nodes and the capacity of the roads leading to these nodeglapgya much more important
role.

This experiment shows: (1) CCRF6 produces high quality solutions in all test cases. (2)The

solution quality of CCREO6 is not affected by the number of destination nodes.

B. CCRP Design Decisions

In this section, we present the experimental evaluationvofdesign decisions to improve the
performance of the CCRP algorithm.

1) Choice of Algorithm to Identify Closest Source-DestoratPair: CCRPO5 is an earlier
algorithm based on the capacity constrained routing agprdgajor improvements in the new
version CCREOG, lie in the algorithm used to find the quickest route betwibe closest source-
destination pair. In CCRPB5, finding quickest route? is done by running one generalized
shortest path search from each source node to all destinatides. Each search is terminated
when any destination node is reached. If there agource nodes in the network, CCRB
algorithm requires: shortest path searches (one per source node) to be donehinte@tion
in order to find routeR.

In CCRPO6, one important design decision was made to improve thpeddténding routeR.
The improvement is to replace theshortest path searches in CCR® with only one shortest
path search. This was done by adding a super sourcedyddeghe network and connecting to
all source nodes. The super sousgds connected to each source node by an edge with infinite
capacity and zero travel time. This allows us to completestsrch for routeR by using only
one single shortest path search, which takes the superesauias the start node. The search
terminates when any destination node is reached. It can iy gaoved that the shortest route
found by this search is the route we need in line 2. This improvement significantly reduces
the computational cost of the algorithm by one degree of rntad@ compared with CCRB5.

Since CCRR05 and CCRHEO6 use the same heuristic method to find a solution, it is drpec

that CCRP05 and CCRE06 would produce solutions with the same evacuation egmessfor
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each test case. To observe the difference between the astuine of CCRPO5 and CCRR06,
we conducted the following experiment. NETGEN was used toeggte evacuation networks
with 5000 evacuees, 20 source nodes, 10 destination naagsuember of nodes varying from
50 to 50,000. It should be noted again that the C@FRRand CCREO6 algorithms used in this
experiment were implemented with Dijkstra’s shortest patorithm using double-bucket data
structure. The reasons for this decision are presenteddtio8dV-B.2. Figure 11 shows the run-
times of CCRP05 and CCRBO6 with respect to different network sizes, with an acconypan

data table.
10000
- 1000
i / 5 Dijkstra's (naive)
g
— —o— Dijkstra
:3 / PSS b
"g 1000 2 5 E” 0 —&— Dijkstra’s (k-ary
§ P heap, k=3)
8
T:’ - 0 q 1 & —- Dijkstra’s (double
E g / 5 bucket)
[T o
= 0.1 > h
& 2 /'//- | 5 algorithm w/?;vaop
£ 1 ‘//4/ Number of Nodes (logscale) | L__queues
5 o1 oot 50 500 5000 50000
% ‘/ |—=— Dijk ' 0.8 16.26 382.84 9532.8
Number of Nodes (logscale) ijkstrals (naive) -
0.01 |—e— Dijkstra's (Fibonacci heap) 01 15 231 316.44
50 500 5000 50000 |—— Dijkstra's (k-ary heap, k=3) 0.08 1.06 1514 200.49
‘+ CCRP 06 0.06 0.69 9.38 108.16 |- Dijkstra's (double bucket) 0.06 0.69 9.38 108.16
. =%~ Incremental graph algorithm 0.49 9.02 190.73 3983.69
‘+CCRP705 0.11 2.85 77.43 1971.84 Wi two queues
Fig. 11. Run-time(log-scale) With Respect to Network Fig. 12. CCRP06 Run-time [(og-scale) With
Size. (Note: Both x-axis and y-axis are in logarithmic sgale Respect to Network Size. (Note: Both x-axis and

y-axis are in logarithmic scale.)

Both the x-axis(humber of nodes) and y-axis(run-time) gjufé 11 are on a logarithmic scale.
It can be seen that, in all test cases, CARPrun-time was much faster than that of CCB®
For small networks with 50 nodes, CCRIB out-performed CCRB5 by a factor of about 2
and this factor became more significant as the network sizeases. For large networks with
50,000 nodes, CCRB6 was faster than CCRE5 by a factor of 10.

This experiment shows that, compared to COFER CCRP06 significantly improves the
performance of the capacity constrained routing algorjtespecially for evacuation scenarios
with large size networks.

2) Comparison of different implementations of the CAFPalgorithm: Another important
design decision for CCRB6 is the choice of shortest path algorithm used to find thekepsi
route R. Shortest path algorithms and their implementations h@aemn ldleveloped and evaluated
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extensively [6], [13], [40]. Many of these algorithms canluee the computational cost by taking
advantage of certain properties of the graph network. Waeeho look specifically at Dijkstra’s
algorithm and the Two-Q based on the following reasoning.

Evacuation networks have a few important properties. Firgist evacuation networks are
transportation road networks; as such they are sparse netvb@cause most road networks
have an edge/node ratio that is less than 3. Second, in oblepndormulation, we defined the
travel time of edges as non-negative integers, which mdamsi¢twork has non-negative and
integral edge weights.

Many shortest path algorithms have proved to be able to eedwenputational cost with
networks of such properties. One of the most comprehensiiews of shortest path algorithms
was done by Cherkassky, Goldberg, and Radzik [13]. Chekitassal. [13] suggested that
Dijkstra’s algorithm has the best performance for networkt#h non-negative edge weights.
Among the various implementations of Dijkstra’s algorithBijkstra’s using binary heap and
Dijkstra’s using double bucket gave better performance djparse networks. In addition, it
has been shown that Two-Q algorithm [34] also performed wellsome problems with road
networks [40].

In order to test the performance of the CCRB® algorithm with different shortest path
algorithms, we chose the following four algorithms as cdatgs to implement the shortest
path search in CCRB6: incremental graph algorithm with two queues, Dijksgtrasing binary
heap, Dijkstra’s using double bucket, and Dijkstra’s udhiigonacci heaps. Dijkstra’s algorithm
using Fibonacci heaps was chosen because it has the besttitedovorst case complexity on
sparse graphs [13] and we wanted to see how its actual pexfmencompare with others.

In this experiment, NETGEN was used to generate evacuagtmanks with 5000 evacuees,
20 source nodes, 10 destination nodes, and number of nodgagrdrom 50 to 50,000. The
purpose was to compare the performance of COBRvith each implementation on evacuation
networks with different sizes. Figure 12 shows the run-timé the candidate algorithms with
respect to different network sizes. Dijkstra’s algorithnithwnaive implementation, which is
known to perform poorly, was added in the experiment as aerfe. As can be seen, the
three implementations of Dijkstra’s algorithms (Dijks$raising binary heap, Dijkstra’s using
double bucket and Dijkstra’s using Fibonacci heaps.) gavelmbetter performance than Two-Q

algorithm. Among the three, Dijkstra’s using double bugsetformed the best mainly because
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it is known to be able to take advantage of non-negative rategdge weights. By contrast,
Dijkstra’s algorithm using Fibonacci heaps was the sloveste it does not take advantage
of these network properties. This result also means thatigorigom with the best theoretical
computational cost (such as Dijkstra’s algorithm usingoRiicci heaps) does not necessarily
give the best performance.

The Two-Q algorithm performed very poorly, which is only texsthan Dijkstra’s algorithm
with naive implementation. Previously, Two-Q algorithmsashown to perform well on some
road networks problems with one-to-all shortest path $ef6]. However, the shortest path
search in the CCRPB6 algorithm is a one-to-some shortest path search becaasl ineeds to
find the best route from the source to any one of the destmatamles. The Two-Q algorithm
cannot take advantage of this because it has to completeedrehsto all nodes before it
terminates. By contrast, Dijkstra’s algorithm can ternénas soon as one of the destination
nodes is reached. This is the main reason that Two-Q algontérformed slower than all the
three candidates of Dijkstra’s algorithm in the experiment

Overall, this experiment shows that Dijkstra’s algorithnthadouble bucket implementation
gives the best performance among all candidates. Therdinplestra’s algorithm with double

bucket is our choice for the design decision of implementhgy shortest path search in CCRP.

C. A Case Study

In this section we report the results of experiments coretlicin a real evacuation scenario.
As shown in Figure 13, the Monticello nuclear power plantbhew 40 miles to the northwest
of the Twin Cities of Minneapolis-St.Paul. Evacuation dameed to be in place in case of
accidents or terrorist attacks. The evacuation zone is mil®radius around the nuclear power
plant as defined by Minnesota Homeland Security and Emeygktanagement [3]. A hand-
drafted evacuation route plan was developed to evacuatfédeted population to a high school.
However, this plan did not consider the capacity of the roatiaorks and put high loads on
two highways.

We conducted an experiment using the CCRP algorithm. Therarpnt was done using
the road network around the evacuation zone provided by timmégota Department of Trans-
portation [2], and the Census 2000 population data for e#felstad city (circles in Figure 13).

The total number of evacuees is about 42,000. As can be se&igume 13, our algorithm
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Experiment Result:

Evacuation egress time:
- Hand-crafted Plan: 268 min.
- New Plan: 162 min.

@ Monticello Power Plant

i

O Source Cities

A Evacuation Destination

ANOKA

= = s P Routes used only by hand-crafted plan

—p Routes used only by result plan of
capacity constrained routing

: Y Osseo Jr. High School
=y Routes used by both plans £ e

10223 93rd Avenue N.

: Congestion is likely in old plan near evacuation

! destination due to capacity constraints. Our plan i
i has richer routes near destination to reduce l
i congestion and total evacuation time. :

Twin Cities

Fig. 13. Overlay of Result Routes for Monticello Power Plawacuation Route Planning

gives a much better evacuation route plan by selecting ehpeths to reduce evacuation time
and utilizing richer routes (routes near evacuation dastin) to reduce congestion. The old
evacuation plan has an evacuation egress time of 268 minliesCCRP algorithm produced
a much better plan with an evacuation time of only 162 minuiéss experiment shows that
our algorithm is effective in real evacuation scenariosdduce evacuation time and improve
existing plans.

Our approach was presented at the Congressional Breakfagtafh on Homeland Security
[37] held by the University Consortium for Geographic Infation Science (UCGIS), and also
reported in the Minnesota Homeland Security and Emergenagiadgement newsletter [39]. It
was also selected by the Minnesota Department of Trangjworteo be used in the evacuation
planning project for the Twin Cities Metro Area, which invek a road network of about 250,000
nodes and a population of over 2 million people. In this phjthe CCRP algorithm was tested
on five pre-defined scenarios and some randomly selectetidosaTransportation professionals

evaluated the quality of the solutions and found them to lhliisatisfactory. An article in
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St. Paul Pioneer Press [5] discussed some salient featfirdBsoproject. The project also
won the Research Partnership Award from the Center for patetion Studies(CTS) [4] as a

recognition for making significant impacts on transpoatati

V. CONCLUSIONS ANDFUTURE WORK

Prior approaches to evacuation route planning relied onddet methods to generate optimal
evacuation plans. These methods suffer from high compuiaticost and memory requirement.
We addressed the need for a computationally efficient appraa [30], by proposing the
CCRPO6 algorithm. CCREO6 is a heuristic algorithm that uses time series to inc@feor
capacity constraints and generalizes shortest path sedgohithms. This algorithm produces
high-quality solutions and is scalable to large evacuatietworks.

In this paper, we present a comprehensive overview of therithgn framework for the
evacuation route planning problem and propose new appesatth address the limitation of
previous studies. We propose an improved heuristic algorfCCRP06) by exploring available
design decisions. We characterize the design space deailatihe context of the CCRB6
algorithm and evaluate the performance of the CdmPalgorithm for each of the design
decisions. A wide range of shortest path algorithms and skatectures are explored and exper-
iment results show that Dijkstra’s algorithm with doublecket data structure gives the best
performance for CCRP6. We prove that CCRB6, which uses Dijkstra’'s algorithm with
double-bucket, has a run-time 6i(p - (m + 2Cn)), which is faster than LP based methods
in real evacuation scenarios. We also prove that CORRequires less memory than the LP
algorithm. Experimental evaluation using various netwodkfigurations show that CCRB6
produces high quality solutions and is much more computalip efficient than LP algorithms.
It is also shown that CCRB6 has a clear advantage over the LP algorithm when inciggdisen
number of destination nodes in the network.

The shortest path algorithm used in our approach assumeththadge travel times include
traffic delays at intersections. It also assumes that thelttames are not time-dependent. We
plan to incorporate existing work in this area, such as [#dJaddress this limitation.

Another interesting possibility for future work is to intege our CCRP approach with the
traffic assignment-simulation approach. The traffic agsigm-simulation approach uses traffic
simulation tools, such as DYNASMART [32] and DynaMIT [7], tonduct stochastic simulation
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of traffic movements based on origin-destination traffic deds and uses queuing methods
to account for road capacity constraints. Although it maketa long time to complete the

simulation process for a large transportation networls #pproach does have the capability to
predict locations for traffic congestion, in contrast to GCRhich assumes that traffic moves

at a certain speed on each road segment.
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